Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Sci Adv ; 8(47): eabo1827, 2022 11 25.
Article in English | MEDLINE | ID: covidwho-2137352

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic underlines the urgent need for effective mRNA vaccines. However, current understanding of the immunological outcomes of mRNA vaccines formulated under different nanoplatforms is insufficient. Here, severe acute respiratory syndrome coronavirus 2 receptor binding domain mRNA delivered via lipid nanoparticle (LNP), cationic nanoemulsion (CNE), and cationic liposome (Lipo) was constructed. Results demonstrated that the structural and biochemical characteristics of nanoparticles shaped their tissue dissemination, cellular uptake, and intracellular trafficking, which eventually determined the activation of antiviral humoral and cellular immunity. Specifically, LNP was mainly internalized by myocyte and subsequently circumvented lysosome degradation, giving rise to humoral-biased immune responses. Meanwhile, CNE and Lipo induced cellular-preferred immunity, which was respectively attributed to the better lysosomal escape in dendritic cells and the superior biodistribution in secondary lymphoid organs. Overall, this study may guide the design and clinical use of mRNA vaccines against COVID-19.


Subject(s)
COVID-19 , Nanoparticles , Humans , SARS-CoV-2 , RNA, Messenger/genetics , COVID-19 Vaccines , Tissue Distribution , Immunity, Cellular
2.
Biotechnol J ; 16(11): e2100207, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1351201

ABSTRACT

BACKGROUND: The emergence of COVID-19 pandemic resulted in an urgent need for the development of therapeutic interventions. Of which, neutralizing antibodies play a crucial role in the prevention and resolution of viral infection. METHODS: We generated antibody libraries from 18 different COVID-19 recovered patients and screened neutralizing antibodies to SARS-CoV-2 and its mutants. After 3 rounds of panning, 456 positive phage clones were obtained with high affinity to RBD (receptor binding domain). Clones were then reconstituted into whole human IgG for epitope binning assay and all 19 IgG were classified into 6 different epitope groups or Bins. RESULTS: Although all antibodies were found to bind RBD, the antibodies in Bin2 had superior inhibitory ability of the interaction between spike protein and angiotensin converting enzyme 2 receptor (ACE2). Most importantly, the antibodies from Bin2 showed stronger binding affinity or ability to mutant RBDs (N501Y, W463R, R408I, N354D, V367F, and N354D/D364Y) derived from different SARS-CoV-2 strains as well, suggesting the great potential of these antibodies in preventing infection of SARS-CoV-2 and its mutations. Furthermore, such neutralizing antibodies strongly restricted the binding of RBD to hACE2 overexpressed 293T cells. Consistently, these antibodies effectively neutralized wildtype and more transmissible mutant pseudovirus entry into hACE2 overexpressed 293T cells. In Vero-E6 cells, one of these antibodies can even block the entry of live SARS-CoV-2 into cells at 12.5 nM. CONCLUSIONS: These results indicate that the neutralizing human antibodies from the patient-derived antibody libraries have the potential to fight SARS-CoV-2 and its mutants in this global pandemic.


Subject(s)
Antibodies, Viral/immunology , COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , COVID-19/therapy , Humans , Immunization, Passive , Pandemics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , COVID-19 Serotherapy
3.
Brief Bioinform ; 22(2): 1137-1149, 2021 03 22.
Article in English | MEDLINE | ID: covidwho-1343668

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a severe and rapidly evolving epidemic. Now, although a few drugs and vaccines have been proved for its treatment and prevention, little systematic comments are made to explain its susceptibility to humans. A few scattered studies used bioinformatics methods to explore the role of microRNA (miRNA) in COVID-19 infection. Combining these timely reports and previous studies about virus and miRNA, we comb through the available clues and seemingly make the perspective reasonable that the COVID-19 cleverly exploits the interplay between the small miRNA and other biomolecules to avoid being effectively recognized and attacked from host immune protection as well to deactivate functional genes that are crucial for immune system. In detail, SARS-CoV-2 can be regarded as a sponge to adsorb host immune-related miRNA, which forces host fall into dysfunction status of immune system. Besides, SARS-CoV-2 encodes its own miRNAs, which can enter host cell and are not perceived by the host's immune system, subsequently targeting host function genes to cause illnesses. Therefore, this article presents a reasonable viewpoint that the miRNA-based interplays between the host and SARS-CoV-2 may be the primary cause that SARS-CoV-2 accesses and attacks the host cells.


Subject(s)
COVID-19/metabolism , MicroRNAs/genetics , COVID-19/genetics , COVID-19/virology , Host-Pathogen Interactions , Humans , SARS-CoV-2/isolation & purification
4.
Front Med (Lausanne) ; 8: 626633, 2021.
Article in English | MEDLINE | ID: covidwho-1325534

ABSTRACT

Coronavirus disease 2019 (COVID-19) has become a global public health concern. We aimed to study the cytokine profile during the convalescent phase and its association with liver functions. We performed a retrospective study to investigate the longitudinal dynamic serum cytokine, liver function, and metabolomic profiles, as well as their potential correlations, from the viral replication phase to early convalescence. Our results demonstrated that liver injury was common. Liver injury was significantly associated with higher levels of interleukin (IL)-6 and IL-10 (p < 0.05). However, alanine aminotransferase levels decreased during the first week after hospital discharge (p < 0.01). In parallel, T-cell and B-cell immune response-stimulating cytokine IL-4, but not IL-2, was significantly elevated (p < 0.05). Furthermore, interferon-γ (IFN-γ) and tumor necrosis factor-α (TFN-α) levels increased, in contrast to the decrease in IL-6 and IL-10 levels; liver function returned to normal. The metabolomic analysis supported active recovery during early convalescence of COVID-19 patients that had distinct metabolic profiles associated with the hepatic tricarboxylic acid cycle, amino acid metabolism, and lipid metabolism. In addition, we identified a metabolomic association of IL-4 with liver repair. Our findings suggest that discharged patients continue to recover from the physiological effects of COVID-19, and the association of IL-4, IL-6, and IL-10 levels with metabolic changes and liver function repair may have important implications for clinical manifestations and treatment of COVID-19.

5.
Eur J Pharm Sci ; 157: 105631, 2021 Feb 01.
Article in English | MEDLINE | ID: covidwho-893750

ABSTRACT

BACKGROUND: Effective antiviral drugs for COVID-19 are still lacking. This study aims to evaluate the clinical outcomes and plasma concentrations of baloxavir acid and favipiravir in COVID-19 patients. METHODS: Favipiravir and baloxavir acid were evaluated for their antiviral activity against SARS-CoV-2 in vitro before the trial initiation. We conducted an exploratory trial with 3 arms involving hospitalized adult patients with COVID-19. Patients were randomized assigned in a 1:1:1 ratio into baloxavir marboxil group, favipiravir group, and control group. The primary outcome was the percentage of subjects with viral negative by Day 14 and the time from randomization to clinical improvement. Virus load reduction, blood drug concentration and clinical presentation were also observed. The trial was registered with Chinese Clinical Trial Registry (ChiCTR 2000029544). RESULTS: Baloxavir acid showed antiviral activity in vitro with the half-maximal effective concentration (EC50) of 5.48 µM comparable to arbidol and lopinavir, but favipiravir didn't demonstrate significant antiviral activity up to 100 µM. Thirty patients were enrolled. The percentage of patients who turned viral negative after 14-day treatment was 70%, 77%, and 100% in the baloxavir marboxil, favipiravir, and control group respectively, with the medians of time from randomization to clinical improvement was 14, 14 and 15 days, respectively. One reason for the lack of virological effect and clinical benefits may be due to insufficient concentrations of these drugs relative to their antiviral activities. One of the limitations of this study is the time from symptom onset to randomization, especially in the baloxavir marboxil and control groups, which is higher than the favipiravir group. CONCLUSIONS: Our findings could not prove a benefit of addition of either baloxavir marboxil or favipiravir under the trial dosages to the existing standard treatment.


Subject(s)
Amides , COVID-19 Drug Treatment , COVID-19 , Dibenzothiepins , Morpholines , Pyrazines , Pyridones , Triazines , Amides/administration & dosage , Amides/blood , Amides/pharmacokinetics , Antiviral Agents/administration & dosage , Antiviral Agents/blood , Antiviral Agents/pharmacokinetics , COVID-19/blood , COVID-19/diagnosis , COVID-19/physiopathology , Dibenzothiepins/administration & dosage , Dibenzothiepins/blood , Dibenzothiepins/pharmacokinetics , Drug Monitoring/methods , Female , Humans , Inhibitory Concentration 50 , Male , Middle Aged , Morpholines/administration & dosage , Morpholines/blood , Morpholines/pharmacokinetics , Pyrazines/administration & dosage , Pyrazines/blood , Pyrazines/pharmacokinetics , Pyridones/administration & dosage , Pyridones/blood , Pyridones/pharmacokinetics , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Symptom Assessment , Treatment Outcome , Triazines/administration & dosage , Triazines/blood , Triazines/pharmacokinetics , Viral Load/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL